

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	WTForms-Appengine 0.1 documentation

Welcome to WTForms-Appengine’s documentation!

Contents:

	WTForms-Appengine
	Model Forms

	Datastore-backed Fields

	NDB

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, WTForms Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	WTForms-Appengine 0.1 documentation

WTForms-Appengine

WTForms-Appengine includes support for AppEngine fields as well as auto-form
generation from models.

Note

WTForms-Appengine supports both appengine.ext.db and appengine.ext.ndb
style models now, and there is some overlap between them. For the near
future, we will continue to support both, but at some point will go to
only supporting AppEngine for python 2.7 and drop support for ext.db
models as well.

Model Forms

Form generation utilities for App Engine’s db.Model class.

The goal of model_form() is to provide a clean, explicit and predictable
way to create forms based on db.Model classes. No malabarism or black
magic should be necessary to generate a form for models, and to add custom
non-model related fields: model_form() simply generates a form class
that can be used as it is, or that can be extended directly or even be used
to create other forms using model_form().

Example usage:

from google.appengine.ext import db
from tipfy.ext.model.form import model_form

Define an example model and add a record.
class Contact(db.Model):
 name = db.StringProperty(required=True)
 city = db.StringProperty()
 age = db.IntegerProperty(required=True)
 is_admin = db.BooleanProperty(default=False)

new_entity = Contact(key_name='test', name='Test Name', age=17)
new_entity.put()

Generate a form based on the model.
ContactForm = model_form(Contact)

Get a form populated with entity data.
entity = Contact.get_by_key_name('test')
form = ContactForm(obj=entity)

Properties from the model can be excluded from the generated form, or it can
include just a set of properties. For example:

Generate a form based on the model, excluding 'city' and 'is_admin'.
ContactForm = model_form(Contact, exclude=('city', 'is_admin'))

or...

Generate a form based on the model, only including 'name' and 'age'.
ContactForm = model_form(Contact, only=('name', 'age'))

The form can be generated setting field arguments:

ContactForm = model_form(Contact, only=('name', 'age'), field_args={
 'name': {
 'label': 'Full name',
 'description': 'Your name',
 },
 'age': {
 'label': 'Age',
 'validators': [validators.NumberRange(min=14, max=99)],
 }
})

The class returned by model_form() can be used as a base class for forms
mixing non-model fields and/or other model forms. For example:

Generate a form based on the model.
BaseContactForm = model_form(Contact)

Generate a form based on other model.
ExtraContactForm = model_form(MyOtherModel)

class ContactForm(BaseContactForm):
 # Add an extra, non-model related field.
 subscribe_to_news = f.BooleanField()

 # Add the other model form as a subform.
 extra = f.FormField(ExtraContactForm)

The class returned by model_form() can also extend an existing form
class:

class BaseContactForm(Form):
 # Add an extra, non-model related field.
 subscribe_to_news = f.BooleanField()

Generate a form based on the model.
ContactForm = model_form(Contact, base_class=BaseContactForm)

	
wtforms_appengine.db.model_form(model, base_class=Form, only=None, exclude=None, field_args=None, converter=None)

	Creates and returns a dynamic wtforms.Form class for a given
db.Model class. The form class can be used as it is or serve as a base
for extended form classes, which can then mix non-model related fields,
subforms with other model forms, among other possibilities.

	Parameters:	
	model – The db.Model class to generate a form for.

	base_class – Base form class to extend from. Must be a wtforms.Form subclass.

	only – An optional iterable with the property names that should be included in
the form. Only these properties will have fields.

	exclude – An optional iterable with the property names that should be excluded
from the form. All other properties will have fields.

	field_args – An optional dictionary of field names mapping to keyword arguments
used to construct each field object.

	converter – A converter to generate the fields based on the model properties. If
not set, ModelConverter is used.

Datastore-backed Fields

	
class wtforms_appengine.fields.ReferencePropertyField(default field arguments, reference_class=None, get_label=None, allow_blank=False, blank_text='')

	A field for db.ReferenceProperty. The list items are rendered in a
select.

	Parameters:	
	reference_class – A db.Model class which will be used to generate the default query
to make the list of items. If this is not specified, The query
property must be overridden before validation.

	get_label – If a string, use this attribute on the model class as the label
associated with each option. If a one-argument callable, this callable
will be passed model instance and expected to return the label text.
Otherwise, the model object’s __str__ or __unicode__ will be used.

	allow_blank – If set to true, a blank choice will be added to the top of the list
to allow None to be chosen.

	blank_text – Use this to override the default blank option’s label.

	
class wtforms_appengine.fields.StringListPropertyField(default field arguments)

	A field for db.StringListProperty. The list items are rendered in a
textarea.

	
class wtforms_appengine.fields.IntegerListPropertyField(default field arguments)

	A field for db.StringListProperty. The list items are rendered in a
textarea.

	
class wtforms_appengine.fields.GeoPtPropertyField(default field arguments)

	

NDB

WTForms now includes support for NDB models and can support mapping the
relationship fields as well as generating forms from models.

	
class wtforms_appengine.fields.KeyPropertyField(default field arguments, reference_class=None, get_label=None, allow_blank=False, blank_text='')

	A field for ndb.KeyProperty. The list items are rendered in a select.

	Parameters:	
	reference_class – A db.Model class which will be used to generate the default query
to make the list of items. If this is not specified, The query
property must be overridden before validation.

	get_label – If a string, use this attribute on the model class as the label
associated with each option. If a one-argument callable, this callable
will be passed model instance and expected to return the label text.
Otherwise, the model object’s __str__ or __unicode__ will be used.

	allow_blank – If set to true, a blank choice will be added to the top of the list
to allow None to be chosen.

	blank_text – Use this to override the default blank option’s label.

	
wtforms_appengine.ndb.model_form(model, base_class=Form, only=None, exclude=None, field_args=None, converter=None)

	Creates and returns a dynamic wtforms.Form class for a given
ndb.Model class. The form class can be used as it is or serve as a base
for extended form classes, which can then mix non-model related fields,
subforms with other model forms, among other possibilities.

	Parameters:	
	model – The ndb.Model class to generate a form for.

	base_class – Base form class to extend from. Must be a wtforms.Form subclass.

	only – An optional iterable with the property names that should be included in
the form. Only these properties will have fields.

	exclude – An optional iterable with the property names that should be excluded
from the form. All other properties will have fields.

	field_args – An optional dictionary of field names mapping to keyword arguments
used to construct each field object.

	converter – A converter to generate the fields based on the model properties. If
not set, ModelConverter is used.

 Copyright 2013, WTForms Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	WTForms-Appengine 0.1 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 wtforms_appengine	

 	
 	
 wtforms_appengine.db	

 	
 	
 wtforms_appengine.fields	

 	
 	
 wtforms_appengine.ndb	

 Copyright 2013, WTForms Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	WTForms-Appengine 0.1 documentation

Index

 G
 | I
 | K
 | M
 | R
 | S
 | W

G

 	

 	GeoPtPropertyField (class in wtforms_appengine.fields)

I

 	

 	IntegerListPropertyField (class in wtforms_appengine.fields)

K

 	

 	KeyPropertyField (class in wtforms_appengine.fields)

M

 	

 	model_form() (in module wtforms_appengine.db)

 	

 	(in module wtforms_appengine.ndb)

R

 	

 	ReferencePropertyField (class in wtforms_appengine.fields)

S

 	

 	StringListPropertyField (class in wtforms_appengine.fields)

W

 	

 	wtforms_appengine (module)

 	wtforms_appengine.db (module)

 	

 	wtforms_appengine.fields (module)

 	wtforms_appengine.ndb (module)

 Copyright 2013, WTForms Team.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		WTForms-Appengine 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, WTForms Team.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/up-pressed.png

